Automatic Relevance Determination in Nonnegative Matrix Factorization

نویسندگان

  • Vincent Y. F. Tan
  • Cédric Févotte
چکیده

Nonnegative matrix factorization (NMF) has become a popular technique for data analysis and dimensionality reduction. However, it is often assumed that the number of latent dimensions (or components) is given. In practice, one must choose a suitable value depending on the data and/or setting. In this paper, we address this important issue by using a Bayesian approach to estimate the latent dimensionality, or equivalently, select the model order. This is achieved via automatic relevance determination (ARD), a technique that has been employed in Bayesian PCA and sparse Bayesian learning. We show via experiments on synthetic data that our technique is able to recover the correct number of components, while it is also able to recover an effective number of components from real datasets such as the MIT CBCL dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

Automatic relevance determination in nonnegative matrix factorization with the -divergence

This paper addresses the estimation of the latent dimensionality in nonnegative matrix factorization (NMF) with the -divergence. The -divergence is a family of cost functions that includes the squared euclidean distance, Kullback-Leibler (KL) and Itakura-Saito (IS) divergences as special cases. Learning the model order is important as it is necessary to strike the right balance between data fid...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Automatic Rank Determination in Projective Nonnegative Matrix Factorization

Projective Nonnegative Matrix Factorization (PNMF) has demonstrated advantages in both sparse feature extraction and clustering. However, PNMF requires users to specify the column rank of the approximative projection matrix, the value of which is unknown beforehand. In this paper, we propose a method called ARDPNMF to automatically determine the column rank in PNMF. Our method is based on autom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009